Contract G-014-027 Northwest Refining, Inc. Preliminary Engineering Feasibility Study One-Page Summary Report # Product Logistics Assessment of Refined Product Markets According to the U.S. Energy Information Administration, North and South Dakota consumed 131,531 bpd of petroleum products in 2005. Montana consumed 95,819 bbl per day in 2005. South Dakota has no oil refinery. Montana has refining capacity, as of January 1st of 2007 of 182,500 bpd. Tesoro operates a 58,000 bpd refinery in Mandan, North Dakota. According to Tesoro, 75% of their refined products are exported into Minnesota. Montana also exports refined products to regional markets. In the Dakotas, there is a short fall of 117,031 bpd of petroleum products from existing facilities based on 2005 statistics. Diesel fuel is used extensively in drilling operations, agriculture, and trucking throughout the region. There are 5 Air Force bases within trucking distance from the proposed site. Therefore, the refinery will be designed to maximize diesel and jet fuel. Gasoline will be produced, but not maximized, as the market for gasoline is less attractive than diesel and jet fuel. LPG could be sold or used in a supplementary, in-plant fuel, producing power for consumption and or sale. The Dakotas and Montana are estimated to require 1.3 million tons of asphalt in 2011, three times the refinery's production capacity. # **Product Transportation** A 100,000 bpd refinery could supply local and major markets. Trucks can access local markets with 100 miles. Building pipelines to Minot, Belfield, and Spearfish is necessary to access major markets in the Dakotas. These will serve trucking, population centers, and air force bases. The total pipeline and terminal cost (including land acquisition) for a 50,000 bpd refinery is \$135,635,758 ±30%; for a 100,000 bpd refinery is \$232,670,087 ±30%. Estimated cost of a 100,000 bbl refinery is 1.5 billion. ### **Crude Oil Supply Forecast** Traditional North Dakota crude oils are heavy sour crudes that are generally stranded, so they are not currently being produced and sold. A refinery in the area would enable markets to access this oil, and would encourage greater production of additional oil reserves. Presently, North Dakota is producing 145,000 bpd of crude oil and Montana is producing 90,000 bpd. The Elm Coulee field in Montana is production 52,000 bpd from the Bakken formation 25 miles from the proposed refinery. A local refinery will provide a market for heavy crudes and provide an incentive to produce light crudes; providing a viable market outlet. ## **Review of Permitting Process** It is strongly recommended that, in order to reduce financial and marketing risks, the refinery start at 100,000 bpd. Emissions at this level are adequate to obtain essential construction permits. Air and wastewater discharge permits will be applied for under EPA Title V through the North Dakota Department of Health. This source will not require a PSD review because all emissions will be below 250 tons/year with controls and the refinery is in an attainment area. Once the construction permit is obtained, applications will be made for many other permits which are required such as storm water NPDES and operation permits. The time from issuance of the construction permit(s) and financing to completed refinery construction could be as long as 5 years. This estimated schedule includes preliminary engineering, the normal procurement cycle, the arrival of long delivery items which alone could take 42 months from the start of detailed engineering, plus another 3 to 6 months for construction.